Week 7 - Friday
COMP 4500

Last time

- What did we talk about last time?
- Integer multiplication
- Started Master Theorem

Questions?

Logical warmup

- A man works on the 10th floor of a building
- He always takes the elevator straight from the 10th floor to the ground floor at the end of the day
- Most mornings, he takes the elevator to the 7th floor and then walks the remaining three flights of stairs up to the 10th floor, even when in a hurry
- However, he takes the elevator straight to the 10th floor on mornings when others are in the elevator or when it is raining

Why?

Master Theorem

Basic form the recurrence relation must take

$T(n) = aT\left(\frac{n}{b}\right) + f(n),$ where $a \ge 1$ and b > 1

- **a** is the number of recursive calls made
- b is how much the quantity of data is divided by each recursive call
- f(n) is the non-recursive work done at each step

Case 1

• If
$$f(n)$$
 is $O(n^{\log_b(a)-\epsilon})$
for some constant $\epsilon > 0$, then
 $T(n)$ is $O(n^{\log_b(a)})$

Case 2

• If f(n) is $\Theta(n^{\log_b(a)} \log^k n)$ for some constant $k \ge 0$, then T(n) is $\Theta(n^{\log_b(a)} \log^{k+1} n)$

• If
$$f(n)$$
 is $\Omega(n^{\log_b(a)+\epsilon})$
for some constant $\epsilon > 0$, and if
 $af\left(\frac{n}{b}\right) \le cf(n)$
for some constant $c < 1$ and sufficiently large n ,
then

$$T(n)$$
 is $\Theta(f(n))$

Stupid Sort algorithm (recursive)

- Base case: List has size less than 3
 - Swap out of order items if necessary
- Recursive case:
 - Recursively sort the first 2/3 of the list
 - Recursively sort the second 2/3 of the list
 - Recursively sort the first 2/3 of the list again

- How long does Stupid Sort take?
- We need to know log_b a
- **a** = 3

Because I'm a nice guy, I'll tell you that the log_{1.5} 3 is about 2.7

We know that binary search takes O(log *n*) time
Can we use the Master Theorem to check that?

Practicing the Master Theorem

- One way to practice is to try to create a problems that different cases of the Master Theorem apply to
- Give a recurrence relation that uses Case 1
- Give a recurrence relation that uses Case 2
- Give a recurrence relation that uses Case 3

Solved Exercises

Finding the maximum of unimodal data

- Imagine that array A contains unimodal data:
 - Values in A increase with index until they reach a maximum point
 - Then they decrease with index
- How can you efficiently find that maximum point?
- How long does your algorithm take to run?

Maximizing stock returns

- Consider historical stock prices over *n* days
- If you had a time machine and could go back and buy stock on day *i* and sell stock on day *j* (where *i* < *j*), which days would you pick to maximize your profits?
 - The goal is to buy as low as possible and to sell as high as possible
- First give an algorithm that runs in O(*n*²) time
- Now give one that runs faster
 - Hint: use divide and conquer

Upcoming

Review for Exam 2

Reminders

- Finish Assignment 4
 - Due Monday
- Exam 2 is next Wednesday
 - Review Chapters 4 and 5